Photon Detection System for DUNE low energy physics study and the demonstration of a few ns timing resolution using ProtoDUNE-SP PDS

Ajib Paudel (Fermilab)
On behalf of the DUNE collaboration
NuFACT, 2022

Outline

Photon Detection System (PDS) for liquid argon detectors

PDS Timing Resolution Study

PDS development to enhance DUNE Low energy **Physics studies**

LAr scintillation

Excited Excimer Scintillation **Excitation Formation Photons** Ar **Ionized Molecule** Ionization **Formation** A charged particle produces ionization Recombination as well as scintillation light in LAr **Ionized Electron**

MIPS Light yield ~ 25,000 photons/MeV at 500 V/cm

Photon detectors are an integral part of LArTPC

- Using charge + light signals enhances the capabilities of a LArTPC
- Photon detectors provides t0, for precise event time (necessary for non-beam events)
- PDS has triggering and background rejection capabilities.

Schematic of scintillation light production in Ar (arXiv:2002.03010)

X-ARAPUCA technology for light detection

- Light traps used to enhance the photon detection efficiency.
- LAr scintillation light in VUV region shifted by using PTP deposited dichroic filter
- Inside the X-ARAPUCA a
 Wavelength Shifting Plate (WLS)
 is used to shift light to ~430 nm
- Silicon Photo Multipliers (SiPM) finally detects the photon signal

Not to scale. Fig:X-ARAPUCA detector

Picture from: DUNE tdr

Fig:ARAPUCA detector (JINST)

Photon Detection System Timing **Resolution Study**

Technologies used in ProtoDUNE-SP PDS

Event Selection

Further, I select only those events that have a TPC track matching with CRT flash.

Methodology:

Photons coming from the same track are examined by two separate ARAPUCA channels. Here I show signals for two nearby ARAPUCA channels.

Methodology continued:

- Channels close to each other are chosen, such that first photon reaches both the channels at the same time.
- Difference in time (△t) measured by the two channels depends on the intrinsic resolution of the detectors.
- A sampling frequency of 150 MHz was used for ProtoDUNE-SP PDS (which corresponds to a sampling time of 6.67 ns), which is the major factor affecting the timing resolution.
- To reduce the effect of sampling time, a fitting method is used for time measurement as described in next slide.

Find the time for the first photon:

Signal distribution selecting few points near the rising edge

 T_1 = time measured for 1st channel T_2 = time measured for 2nd channel

Signal distribution selecting few points near the rising edge

Difference in time measured by two channels

Measured timing resolution = sigma of fit/ $\sqrt{2}$ ~ 3.7 ns

Timing resolution measured for different **ARAPUCA** channel pairs:

12 ARAPUCA channels in APA6 make 66 pairs

Dependence of timing resolution on photon numbers (<N>):

Number of photons vs timing resolution

As the average number of photons increase, measured timing resolution value plateaus. At sufficiently high number of photons timing resolution -> 3 ns

DUNE LOW ENERGY PHYSICS

Supernova 'stream' in neutrino lab's sight Picture taken from:

DUNE Supernova Physics

- DUNE expects to observe neutrino-bursts from a core-collapse supernova during its lifetime.
- A few to few tens of MeV regime.
- LAr is uniquely sensitive to electron neutrino component

$$\nu_e + {}^{40}\text{Ar} \rightarrow e^- + {}^{40}\text{K}^*$$

- Final state products appear as small tracks and blips requiring excellent energy resolution for precise neutrino energy reconstruction.
- Photon detectors may play an important role in triggering and calorimetric energy reconstruction of such events.

DUNE-FD2 (VD) PDS:

- Simulation studies for DUNE HD shows PDS energy resolution improves with increasing light yield (LY). (right plot)
- To increase LY for DUNE FD2 (VD) PDS, we are planning to install PDS on top of High Voltage cathode surface as well as behind semi-transparent field cage.

fig: DUNE HD (simulation) PDS vs TPC energy resolution (from DUNE tdr)

Reflective CRPs are forming **APAs**

~4π PDS coverage is expected to improve energy resolution

Novel technology for light collection at cathode maintainaing electrical isolation

PoF--> Power-over-fiber and SoF→ Signal-over-fiber

First Successful demonstration of PoF and SoF technology:

- The PoF and SoF technology successfully demonstrated on a prototype with a full-scale components at CERN.
- The figure on the right shows photon signals from cosmic muons collected with Cathode HV ON and OFF.
- R&D activities to further improve the signal quality and study long term stability (30+ yrs) are ongoing in various institutions across the globe.

SUMMARY

- DUNE is a next generation neutrino detector using LAr technology.
- Photon Detection System has been shown to achieve ~3ns timing resolution using ProtoDUNE-SP data, which can be exploited for physics studies and background rejection.
- To get an excellent energy resolution at low energy DUNE FD module 2 is designed to have ~4π light coverage
- PDS planned to be placed on HV cathode surface.
- Electrical isolation will be maintained using novel PoF and SoF technology.

Thank you

BACK UP

Deep Underground Neutrino Experiment

Origin of matter: Exploring neutrino oscillations, CP violation. Are neutrinos the reasons world is made of matter?

Unification of forces: Proton decay and relation between stability of matter and Grand Unification theory.

Black hole formation: Neutrinos from supernova burst help peer inside neutron star and black hole formation

- Prototyping production and installation procedures for DUNE-FD
- Validating design from perspective of basic detector performance

Major Goals

- Accumulating test-beam data to understand/calibrate response of detector to different particle species
- Demonstrating long term operational stability of the detector

Liquid Argon Time Projection Chamber

- Charged particles produces electron-ion pairs and scintillation light.
- Electric field causes electrons to drift towards the anode/wire planes.
- ➤ Charge detected by wire planes as waveforms.
- Particle trajectory reconstructed based on the time and position of the waveform.
- Particle energy reconstructed based on charge deposited

PDS system are an integral part of LAr detectors collecting scintillation light.

ProtoDUNE-SP Detector

- Largest Liquid Argon Time Projection Chamber (LArTPC) till date.
- 420 tons active mass of liquid Argon. 6 m X 6.9 m X 7.2 m dimension.
- 2 drift volumes of 3.6m drift length each.
- Started operation in Fall 2018.

Fig: Components of ProtoDUNE-SP TPC